Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Rev Assoc Med Bras (1992) ; 68(3): 344-350, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-2114224

ABSTRACT

BACKGROUND: Coronavirus disease 2019, which is caused by the new severe acute respiratory syndrome coronavirus 2, became a pandemic in 2020 with a mortality rate of 2% and high transmissibility, thus making studies with an epidemiological profile essential. OBJECTIVES: The aim of this study was to characterize the population that performed the severe acute respiratory syndrome coronavirus 2 molecular and serological tests in Carlos Chagas Laboratory - Sabin Group in Cuiabá. METHODS: A retrospective cross-sectional study was carried out with all the samples collected from nasal swab tested by RT-PCR and serological for severe acute respiratory syndrome coronavirus 2 IgM/IgG from the population served between April and December 2020. FINDINGS: In the analysis period, 23,631 PCR-coronavirus disease 2019 examinations were registered. Of this total number of cases, 7,649 (32.37%) tested positive, while 15,982 (66.31%) did not detect viral RNA and 374 of the results as undetermined. The peak of positive RT-PCR performed in July (n=5,878), with 35.65% (n=2,096). A total of 8,884 tests were performed on serological test SOROVID-19, with a peak of 1,169 (57.16%) of the positive tests for severe acute respiratory syndrome coronavirus 2 in July. MAIN CONCLUSIONS: Molecular positivity and serological tests, both peaked in July 2020, were mostly present in women aged 20-59 years, characterizing Cuiabá as the epicenter of the Midwest region in this period due to the high rate of transmissibility of severe acute respiratory syndrome coronavirus 2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , COVID-19/epidemiology , Cross-Sectional Studies , Female , Humans , Immunoglobulin G , Immunoglobulin M , Prevalence , Retrospective Studies , Serologic Tests/methods
2.
Food Chem Adv ; 1: 100023, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1712618

ABSTRACT

The World Health Organization (WHO) declared COVID-19 as a pandemic on March 11, 2020, because of its widespread transmission and infection rates. The unique severe disease was found in Wuhan, China, since December 2019, and swiftly spread throughout the world. Natural chemicals derived from herbal medicines and medicinal mushrooms provide a significant resource for the development of novel antiviral drugs. Many natural drugs have been proven to have antiviral properties against a variety of virus strains, such as the coronavirus and the herpes simplex virus (HSV).. In this research, successful dietary treatments for different COVID illnesses were compared to potential of mushroom products in its therapy. In Google Scholar, Science Direct, PubMed, and Scopus, search keywords like COVID, COVID-19, SARS, MERS, mushrooms, and their compounds were utilized. In this review of the literature we foucsed popular mushrooms such as Agaricus subrufescens Peck, Agaricus blazei Murill, Cordyceps sinensis (Berk.) Sacc., Ganoderma lucidum (Curtis.) P. Karst., Grifola frondosa (Dicks.) Gray, Hericium erinaceus (Bull.) Pers., Inonotus obliquus (Arch. Ex Pers.) Pilát., Lentinula edodes (Berk.) Pegler, Pleurotus ostreatus (Jacq.) P. Kumm., Poria cocos F.A. Wolf, and Trametes versicolor (L.) Lloyd.,. Changed forms of ß-Glucan seem to have a good impact on viral replication suppression and might be used in future studies. However, the results seems terpenoids, lectins, glycoproteins, lentinan, galactomannan, and polysaccharides from mushrooms are promising prophylactic or therapeutic agents against COVID-19.

3.
J Ethnopharmacol ; 283: 114540, 2022 Jan 30.
Article in English | MEDLINE | ID: covidwho-1401608

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora cordifolia (Willd.) Miers (Menispermaceae) is a Mediterranean herb, used in Ayurvedic, Siddha, Unani, and folk medicines. The herb is also used in conventional medicine to treat oxidative stress-related diseases and conditions, including inflammation, pain, diarrhea, asthma, respiratory infections, cancer, diabetes, and gastrointestinal disorders. AIM OF THE REVIEW: The taxonomy, botanical classification, geographical distribution, and ethnobotanical uses of T. cordifolia, as well as the phytochemical compounds found in the herb, the toxicology of and pharmacological and clinical studies on the effects of T. cordifolia are all covered in this study. MATERIALS AND METHODS: To gather information on T. cordifolia, we used a variety of scientific databases, including Scopus, Google Scholar, PubMed, and Science Direct. The information discussed focuses on biologically active compounds found in T. cordifolia, and common applications and pharmacological activity of the herb, as well as toxicological and clinical studies on its properties. RESULTS: The findings of this study reveal a connection between the use of T. cordifolia in conventional medicine and its antioxidant, anti-inflammatory, antihypertensive, antidiabetic, anticancer, immunomodulatory, and other biological effects. The entire plant, stem, leaves, root, and extracts of T. cordifolia have been shown to have a variety of biological activities, including antioxidant, antimicrobial, antiviral, antiparasitic, antidiabetic, anticancer, anti-inflammatory, analgesic and antipyretic, hepatoprotective, and cardioprotective impact. Toxicological testing demonstrated that this plant may have medicinal applications. T. cordifolia contains a variety of biologically active compounds from various chemical classes, including alkaloids, terpenoids, sitosterols, flavonoids, and phenolic acids. Based on the reports researched for this review, we believe that chemicals in T. cordifolia may activate Nrf2, which leads to the overexpression of antioxidant enzymes such as CAT, GPx, GST, and GR, and thereby induces the adaptive response to oxidative stress. T. cordifolia is also able to reduce NF-κB signalling by inhibiting PI3K/Akt, activating AMPK and sirtuins, and downregulating PI3K/Akt. CONCLUSIONS: Our findings indicate that the pharmacological properties displayed by T. cordifolia back up its conventional uses. Antimicrobial, antiviral, antioxidant, anticancer, anti-inflammatory, antimutagenic, antidiabetic, nephroprotective, gastroprotective, hepatoprotective, and cardioprotective activities were all demonstrated in T. cordifolia stem extracts. To validate pharmacodynamic targets, further research is needed to evaluate the molecular mechanisms of the known compounds against gastrointestinal diseases, inflammatory processes, and microbial infections, as immunostimulants, and in chemotherapy. The T. cordifolia safety profile was confirmed in a toxicological analysis, which prompted pharmacokinetic assessment testing to confirm its bioavailability.


Subject(s)
COVID-19 Drug Treatment , Medicine, Traditional , Oxidative Stress/drug effects , Plants, Medicinal , SARS-CoV-2 , Tinospora/chemistry , Humans , Phytotherapy
SELECTION OF CITATIONS
SEARCH DETAIL